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Abstract

In this paper we consider free vibration of inhomogeneous Bernoulli–Euler beam which is clamped at one end and

elastically restrained at the other. The closed-form solution is obtained for the beam of constant material density and

constant cross-section but of modulus of elasticity, which varies in a polynomial manner. The semi-inverse method is

utilized; namely, the fundamental mode of vibration is postulated as a polynomial too. It turns out that such a formulation

leads to infinite number of solutions; one can obtain an unique solution by introducing an additional requirement inherent

in vibration tailoring: namely, designing the system that possesses the pre-specified natural frequency. It is shown that if in

addition to the fundamental mode shape the natural frequency is also specified, the unique solution is derived.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The free vibration of uniform and non-uniform beams attracted many investigators since Bernoulli and
Euler derived the governing differential equation in the 18th century. The beams with end springs have been
dealt with by many investigators. In the Handbook by Karnovsky and Lebed [1] both analytical and
numerical are summarized. Due to the numerous papers it is virtually impossible to do justice to the
accumulated literature. Therefore, only representative works will be cited. The studies by Liu and Chen [2],
Hibbeler [3], Maurizi et al. [4], Laura and Gutierez [5], Lee and Kuo [6] and Lizarev [7] should be mentioned.
The above papers dealt with direct problems, i.e. the ones in which the flexural rigidity and the inertial
coefficient are specified, and one needs to determine the natural frequencies and mode shapes. Inverse
vibration problems were attacked by Barcilon [8,9], Lowe [10] and other investigators. In these problems one
deals with construction of the Euler–Bernoulli beam from the spectral data. In these problems circumstances
the natural question arises on how can one get the spectra that serve as inputs for the construction problem.

Elishakoff and Candan [11] dealt with a semi-inverse problem with a more modest objective than that
repeated in Refs. [8–10]. Elishakoff and Candan [11] dealt with a situation when only the fundamental mode
shape is specified, in the form of a simple polynomial; one assumes the inertial coefficient as given and seeks
the polynomial flexural rigidity that is compatible with the mode shape and attendant postulated flexural
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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rigidity. For the inhomogeneous beams with ideal boundary conditions, including pinned, clamped or free
ends, Elishakoff and Candan [11] constructed Bernoulli–Euler beams that correspond to the provided
information. It turned out that there are an infinite number of beams that posses the specified natural mode.
To have a unique solution it is thus necessary to impose some additional requirements.

In this paper the results of Ref. [11] are generalized to include an inhomogeneous beam with an end spring.
According to Einstein, the theories and methods ought to be as simple as possible, but not simpler; here the
simplest possible solution is presented for this problem. The results show the usefulness of such a formulation.
It turns out that by postulating the mode shape and setting a natural frequency at the preselected level, one
obtains an unique solution.
2. Basic equations

The governing differential equation for the inhomogeneous beam reads

q2

qx2
DðxÞ

q2w
qx2

� �
þ RðxÞ

q2w
qt2
¼ 0, (1)

where w(x,t) is the transverse displacement, D(x) ¼ E(x)I(x) is the flexural rigidity, E the modulus of elasticity,
I(x) the moment of inertia, R(x) ¼ r(x)A(x) inertial coefficient, r(x) the mass density, A(x) the cross-sectional
area, x the axial coordinate, t the time. We set R(x) ¼ const, namely that r(x) ¼ const ¼ r0,
A(x) ¼ const ¼ A0, I(x) ¼ const ¼ I0. The only function that varies along the beam’s axis is the modulus of
elasticity, as a result of which the flexural rigidity is a function of x.

We introduce a non-dimensional axial coordinate

x ¼ x=L, (2)

where L is the length of the beam. The inertial coefficient R(x) is considered to be a constant

RðxÞ ¼ rA ¼ const, (3)

so that Eq. (1) reduces to

d2

dx2
DðxÞ

d2W

dx2

� �
� rAL4o2W ¼ 0, (4)

where o is the sought natural frequency, W(x) the mode shape. Eq. (4) is obtained from Eq. (1) by the
substitution

wðx; tÞ ¼W ðxÞ sin ot. (5)

We study a beam that has a rotational spring at the left end and is clamped at the right end, so that the
boundary conditions are

W ðxÞ ¼ 0 at x ¼ 0, (6)

kL
dW ðxÞ
dx

¼ DðxÞ
d2W ðxÞ

dx2
at x ¼ 0, (7)

W ðxÞ ¼ 0 at x ¼ 1, (8)

dW ðxÞ
dx

¼ 0 at x ¼ 1, (9)

where k is the spring stiffness.
The simplest function that can be postulated for the mode shape is a fourth-order polynomial

W ðxÞ ¼ a0 þ a1xþ a2x
2
þ a3x

3
þ a4x

4. (10)
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The enforcement of condition (6) yields

a0 ¼ 0. (11)

Prior to satisfaction of the boundary condition in Eq. (7) we need a specific form for the flexural rigidity D(x).
We are solving a semi-inverse problem where the flexural rigidity is determined in such a manner that the
function in Eq. (10) represents an exact mode shape. The function for D(x) that is compatible with Eq. (10) is a
fourth-order polynomial

DðxÞ ¼ b0 þ b1xþ b2x
2
þ b3x

3
þ b4x

4. (12)

Eqs. (10) and (12) are substituted into Eq. (7) to result in

kLa1 ¼ 2b0a2. (13)

The boundary conditions in Eqs. (8) and (9) lead to

a2 ¼ �2a3 � 3a4, (14)

a1 ¼ a3 þ 2a4, (15)

and

a2 ¼
2b0

4b0 þ kL
a4. (16)

In view of Eq. (13) a1 becomes

a1 ¼
2b0

4b0 þ kL
a4. (17)

Substituting Eq. (17) into Eq. (15) leads to

a3 ¼ �2
3b0 þ kLð Þ

4b0 þ kL
a4. (18)

Thus, the mode shape becomes

W ðxÞ ¼ a4
2b0

4b0 þ kL
xþ

kL

4b0 þ kL
x2 �
ð6b0 þ 2kLÞ

4b0 þ kL
x3 þ x4

� �
, (19)

where, a4 is an arbitrary constant. We fix it at unity. The expression for the mode shape is

W ðxÞ ¼
2b0

4b0 þ kL
xþ

kL

4b0 þ kL
x2 �

6b0 þ 2kL

4b0 þ kL
x3 þ x4. (20)

The result of substitution of Eqs. (12) and (20) into Eq. (4) is

X4
j¼0

Cjx
j
¼ 0; (21)

where

C0 ¼ 24b0kL� 24b1kLþ 4b2kLþ 96b2
0 � 72b1b0, (22)

C1 ¼ 72b2kLþ 72b1kL� 2rAo2L4b0 � 216b2b0 þ 288b1b0 þ 12b3kL, (23)

C2 ¼ 144b2kL� 144b3kLþ 576b0b2 � 432b3b0 þ 24b4kL� rAL5o2k, (24)

C3 ¼ 960b3b0 � 720b4b0 þ 240b3kLþ 2rAL5o2k þ 6rAo2L4b0 � 240b4kL, (25)

C4 ¼ 360b4kL� 4rAL4o2b0 þ 1440b4b0 � rAo2kL5. (26)
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Eq. (26) results in

o2 ¼ 360b4=rAL4. (27)

It should be noted that although Eq. (26) depends on the spring stiffness coefficient kL, the expression for o2 is
independent of it. Remarkably, formula (27) coincides with its counterpart that is valid for the beam with
classical boundary conditions, as reported in Ref. [11] (see also the monograph [12]). Whereas the relation
between o2 and b4 remains unchanged, the rest of the coefficients in D(x) depend upon the stiffness of the end
spring. By substituting Eq. (27) into Eq. (25) we get

b3 ¼
�2ð3b0 þ kLÞ

4b0 þ kL
b4, (28)

and Eqs. (23) and (24) yield

b2 ¼
k2L2 � 8b0kL� 54b2

0

3ð4b0 þ kLÞ2
b4, (29)

b1 ¼
2 k3L3 � 9b2

0kL5 þ 87b2
0kLþ 159b3

0

� �
3ð4b0 þ kLÞ3

b4. (30)

From Eq. (22) we get

b4 ¼
18b0ð4b0 þ kLÞ4

5256kLb3
0 þ 1706k2L2b2

0 þ 232b0k3L3 þ 5724b4
0 þ 11k4L4

. (31)

The flexural rigidity D(x) is obtained by substituting Eqs. (28)–(31) into Eq. (12). Note that when k ¼ 1, we get
b3 ¼ 1.5b4 as in Ref. [12]for the pinned–clamped inhomogeneous beam. When k tends to infinity, b3
approaches value �2b4 as is the case for a clamped–clamped inhomogeneous beam [12].

It is seen that when the end spring stiffness k is fixed, we get an infinite number beams since the coefficient b0
is arbitrary. For example, for kL ¼ 1 and b0 ¼ 1, we have

DðxÞ ¼ 1þ
15780

12929
x�

9150

12929
x2 �

18000

12929
x3 þ

11250

12929
x4

� 1þ 1:2205x� 0:70771x2 � 1:3922x3 þ 0:87014x4. ð32Þ

For kL ¼ 10 and b0 ¼ 2 we get

DðxÞ ¼ 2þ
26856

12281
x�

7452

12281
x2 �

46656

12281
x3 þ

26244

12281
x4

� 2þ 2:1868x� 0:60679x2 � 3:799x3 þ 2:137x4. ð33Þ

For kL ¼ 100 and b0 ¼ 3

DðxÞ ¼ 3þ
7222900131543161

2251799813685248
x�

7365930465590695

9007199254740992
x2

�
296257640492991

35184372088832
x3

4870584328104953

1125899906842624
x4

� 3þ 3:2076x� 0:81778x2 � 8:4201x3 þ 4:3259x4. ð34Þ

These are shown in the Figs. 1–3. It may appear at the first glance that the variation shown in Fig. 1 is
symmetric with respect to the middle cross-section x ¼ 0:5. It is however not a symmetric function with respect
to x ¼ 0:5, because the presence of the end spring introduces a lack of symmetry. For k ¼ 0, the figures is
symmetric because of symmetric pinned–clamped boundary conditions [12]. At low values of kL the mode
shape may appear symmetric, but the deviation from symmetry is more apparent for a beam with end springs
of larger stiffness.

In Fig. 2, kL is set at ten, whereas in Fig. 3, kL ¼ 100. In these figures the lack of symmetry is apparent.
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Fig. 1. Variation of D(x) for kL ¼ 1 and b0 ¼ 1, xA[0;1].

Fig. 2. Variation of D(x) for kL ¼ 10 and b0 ¼ 2, xA[0;1].
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The presence of an infinite number of solutions is a favorable consequence of the present formulation of the
semi-inverse problem. It allows a designer to introduce an additional requirement. For example, if the design
requires the beam to possess a specified natural frequency O, then from Eq. (27) we get the expression for b4 by
setting o ¼ O:

b4 ¼ rAL4O2=360. (35)

Then, by equating the left-hand sides of Eq. (31) and (35), we get

18b0ð4b0 þ kLÞ

5256kLb3
0 þ 1706k2L2b2

0 þ 232b0k
3L3 þ 5724b4

0 þ 11k4L4
¼

rAL4O2

360
, (36)

which is a cubic equation in b0. Solving Eq. (36) for a specified kL and O and substitution the resulting b0 into
Eqs. (28)–(30) yields the coefficients b1, b2 and b3, resulting in an unique beam.
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Fig. 3. Variation of D(x) for kL ¼ 100 and b0 ¼ 3, xA[0;1].
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3. Discussion

It is instructive to contrast the above closed-form solution for a class of polynomially inhomogeneous
beams with that valid for an uniform, homogeneous beam. In the latter case the mode shape is of the form [13]

W ðxÞ ¼ B1 sinðaxÞ þ B2 cos hðaxÞ þ B3 sinðaxÞ þ B4 cosðaxÞ, (37)

where

a4 ¼ rAo2=EI . (38)

Satisfaction of the boundary conditions in Eqs. (6–9) leads to the following transcendental equation:

kL

EI
1þ

1

cos hðaLÞ cosðaLÞ

� �
¼ tanðaLÞ � tan hðaLÞ. (39)

Note that when k vanishes, the above equation reduces to

tanðaLÞ ¼ tan hðaLÞ, (40)

which is the frequency equation for the pinned-clamped beam. For kL approaching infinity

cosðaLÞ cos hðaLÞ þ 1 ¼ 0, (41)

recovering the frequency equation of the clamped–clamped beam. For general kL, the fundamental natural
frequencies are, for example, for kL=EI ¼ 0:01, aLE0.527; for kL=EI ¼ 0:1, aLE0.6759; for kL=EI ¼ 1,
aLE1.305; for kL=EI ¼ 10, aLE1.793; for kL=EI ¼ 100, aLE1.877. Finally, for kL/EI-N, aLE1.885.
The results are obtained from a numerical solution of the characteristic equation given in Eq. (39).

It is worth noting that while the solution of the uniform, homogeneous beam necessitates numerical tackling
of the transcendental equation, the semi-inverse method in the present setting furnishes the solution in a closed,
polynomial form. It is anticipated that there could be closed-form solutions available for non-polynomial
variation of the mode shape and/or the flexural rigidity functions.
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